Interaction between PCNA and DNA ligase I is critical for joining of Okazaki fragments and long-patch base-excision repair
نویسندگان
چکیده
DNA ligase I belongs to a family of proteins that bind to proliferating cell nuclear antigen (PCNA) via a conserved 8-amino-acid motif [1]. Here we examine the biological significance of this interaction. Inactivation of the PCNA-binding site of DNA ligase I had no effect on its catalytic activity or its interaction with DNA polymerase beta. In contrast, the loss of PCNA binding severely compromised the ability of DNA ligase I to join Okazaki fragments. Thus, the interaction between PCNA and DNA ligase I is not only critical for the subnuclear targeting of the ligase, but also for coordination of the molecular transactions that occur during lagging-strand synthesis. A functional PCNA-binding site was also required for the ligase to complement hypersensitivity of the DNA ligase I mutant cell line 46BR.1G1 to monofunctional alkylating agents, indicating that a cytotoxic lesion is repaired by a PCNA-dependent DNA repair pathway. Extracts from 46BR.1G1 cells were defective in long-patch, but not short-patch, base-excision repair (BER). Our results show that the interaction between PCNA and DNA ligase I has a key role in long-patch BER and provide the first evidence for the biological significance of this repair mechanism.
منابع مشابه
A conserved interaction between the replicative clamp loader and DNA ligase in eukaryotes: implications for Okazaki fragment joining.
The recruitment of DNA ligase I to replication foci and the efficient joining of Okazaki fragments is dependent on the interaction between DNA ligase I and proliferating cell nuclear antigen (PCNA). Although the PCNA sliding clamp tethers DNA ligase I to nicked duplex DNA circles, the interaction does not enhance DNA joining. This suggests that other factors may be involved in the joining of Ok...
متن کاملAlternative Okazaki Fragment Ligation Pathway by DNA Ligase III
Higher eukaryotes have three types of DNA ligases: DNA ligase 1 (Lig1), DNA ligase 3 (Lig3) and DNA ligase 4 (Lig4). While Lig1 and Lig4 are present in all eukaryotes from yeast to human, Lig3 appears sporadically in evolution and is uniformly present only in vertebrates. In the classical, textbook view, Lig1 catalyzes Okazaki-fragment ligation at the DNA replication fork and the ligation steps...
متن کاملFunctional redundancy between DNA ligases I and III in DNA replication in vertebrate cells
In eukaryotes, the three families of ATP-dependent DNA ligases are associated with specific functions in DNA metabolism. DNA ligase I (LigI) catalyzes Okazaki-fragment ligation at the replication fork and nucleotide excision repair (NER). DNA ligase IV (LigIV) mediates repair of DNA double strand breaks (DSB) via the canonical non-homologous end-joining (NHEJ) pathway. The evolutionary younger ...
متن کاملProliferating cell nuclear antigen facilitates excision in long-patch base excision repair.
There are two distinct pathways for the removal of modified DNA bases through base excision repair (BER) in vertebrates. Following 5' incision by AP endonuclease, the pathways diverge as two different excision mechanisms are possible. In short-patch repair, DNA polymerase beta accounts for both excision activity and single nucleotide repair synthesis. In long-patch repair, the damage-containing...
متن کاملLong patch base excision repair with purified human proteins. DNA ligase I as patch size mediator for DNA polymerases delta and epsilon.
Among the different base excision repair pathways known, the long patch base excision repair of apurinic/apyrimidinic sites is an important mechanism that requires proliferating cell nuclear antigen. We have reconstituted this pathway using purified human proteins. Our data indicated that efficient repair is dependent on six components including AP endonuclease, replication factor C, proliferat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Current Biology
دوره 10 شماره
صفحات -
تاریخ انتشار 2000